A planet (from Greek πλανήτης αστήρ planētēs astēr "wandering star") is a celestial body orbiting a staror stellar remnant that is massive enough to be rounded by its own gravity, is not massive enough to cause thermonuclear fusion, and has cleared its neighbouring region of planetesimals.[a][1][2] The termplanet is ancient, with ties to history, science, mythology, and religion. The planets were originally seen by many early cultures as divine, or as emissaries of the gods. As scientific knowledge advanced, human perception of the planets changed, incorporating a number of disparate objects. In 2006, the International Astronomical Union officially adopted a resolution defining planets within the Solar System. This definition has been both praised and criticized, and remains disputed by some scientists.
The planets were thought by Ptolemy to orbit the Earth in deferent and epicycle motions. Though the idea that the planets orbited the Sun had been suggested many times, it was not until the 17th century that this view was supported by evidence from the first telescopic astronomical observations, performed byGalileo Galilei. By careful analysis of the observation data, Johannes Kepler found the planets' orbits to be not circular, but elliptical. As observational tools improved, astronomers saw that, like Earth, the planets rotated around tilted axes, and some shared such features as ice caps and seasons. Since the dawn of the Space Age, close observation by probes has found that Earth and the other planets share characteristics such as volcanism, hurricanes, tectonics, and even hydrology.
Planets are generally divided into two main types: large, low-density gas giants, and smaller, rockyterrestrials. Under IAU definitions, there are eight planets in the Solar System. In order of increasing distance from the Sun, they are the four terrestrials, Mercury, Venus, Earth, and Mars, then the four gas giants, Jupiter, Saturn, Uranus, and Neptune. Six of the planets are orbited by one or more natural satellites. Additionally, the Solar System also contains at least five dwarf planets[3] and hundreds of thousands of Small Solar System Bodies.
Since 1992, hundreds of planets around other stars ("extrasolar planets" or "exoplanets") in the Milky Way Galaxy have been discovered. As of October 5, 2011, 690 known extrasolar planets are listed in theExtrasolar Planets Encyclopaedia, ranging from the size of terrestrial planets somewhat larger than Earth to gas giants larger than Jupiter.[4]
Mercury
Mercury is the innermost and smallest planet in the Solar System,[a] orbiting the Sun once every 87.969 Earth days. The orbit of Mercury has the highest eccentricity of all the Solar System planets, and it has the smallest axial tilt. It completes three rotations about its axis for every two orbits. The perihelion of Mercury's orbit precesses around the Sun at an excess of 43 arcseconds per century, a phenomenon that was explained in the 20th century by Albert Einstein's General Theory of Relativity.[11] Mercury is bright when viewed from Earth, ranging from −2.3 to 5.7 inapparent magnitude, but is not easily seen as its greatest angular separation from the Sun is only 28.3°. Since Mercury is normally lost in the glare of the Sun, unless there is a solar eclipse it can be viewed from Earth's Northern Hemisphere only in morning or evening twilight, while its extreme elongations occur in declinations south of the celestial equator, such that it can be seen at favorable apparitions from moderate latitudes in the Southern Hemisphere in a fully dark sky.
Comparatively little is known about Mercury; ground-based telescopes reveal only an illuminated crescent with limited detail. The first of two spacecraft to visit the planet was Mariner 10, which mapped about 45% of the planet’s surface from 1974 to 1975. The second is the MESSENGER spacecraft, which attained orbit around Mercury on March 17, 2011,[12] to map the rest of the planet.[13]
Mercury is similar in appearance to the Moon: it is heavily cratered with regions of smooth plains, has no natural satellites and no substantial atmosphere. Unlike the Moon, it has a large iron core, which generates a magnetic fieldabout 1% as strong as that of the Earth.[14] It is an exceptionally dense planet due to the large relative size of its core. Surface temperatures range from about 90 to 700 K (−183 °C to 427 °C),[15] with the subsolar point being the hottest and the bottoms of craters near the poles being the coldest.
Recorded observations of Mercury date back to at least the first millennium BC. Before the 4th century BC, Greek astronomers believed the planet to be two separate objects: one visible only at sunrise, which they called Apollo; the other visible only at sunset, which they called Hermes.[16] The English name for the planet comes from the Romans, who named it after the Roman god Mercury, which they equated with the Greek Hermes (Ἑρμῆς). The astronomical symbol for Mercury is a stylized version of Hermes' caduceus.[17]
Venus
Venus is the second planet from the Sun, orbiting it every 224.7 Earth days.[9] The planet is named after Venus, theRoman goddess of love and beauty. After the Moon, it is the brightest natural object in the night sky, reaching anapparent magnitude of −4.6, bright enough to cast shadows. Because Venus is an inferior planet from Earth, it never appears to venture far from the Sun: its elongation reaches a maximum of 47.8°. Venus reaches its maximum brightness shortly before sunrise or shortly after sunset, for which reason it has been known as the Morning Star or Evening Star.
Venus is classified as a terrestrial planet and it is sometimes called Earth's "sister planet" due to the similar size, gravity, and bulk composition. Venus is covered with an opaque layer of highly reflective clouds of sulfuric acid, preventing its surface from being seen from space in visible light. Venus has the densest atmosphere of all the terrestrial planets in the Solar System, consisting mostly of carbon dioxide. Venus has no carbon cycle to lock carbon back into rocks and surface features, nor does it seem to have any organic life to absorb it in biomass. Venus is believed to have previously possessed Earth-like oceans,[11] but these evaporated as the temperature rose. Venus's surface is a dusty dry desertscape with many slab-like rocks, periodically refreshed by volcanism. The water has most likely dissociated, and, because of the lack of a planetary magnetic field, the hydrogen has been swept into interplanetary space by the solar wind.[12] The atmospheric pressure at the planet's surface is 92 times that of the Earth.
The Venusian surface was a subject of speculation until some of its secrets were revealed by planetary science in the twentieth century. It was finally mapped in detail by Project Magellan in 1990–91. The ground shows evidence of extensive volcanism, and the sulfur in the atmosphere may indicate that there have been some recent eruptions.[13][14] The absence of evidence of lava flow accompanying any of the visible caldera remains an enigma. The planet has few impact craters, demonstrating that the surface is relatively young, approximately 300–600 million years old.[15][16] There is no evidence for plate tectonics, possibly because its crust is too strong to subduct without water to make it less viscous. Instead, Venus may lose its internal heat in periodic major resurfacing events.[15]
The Earth
Earth (or the Earth) is the third planet from the Sun, and the densest and fifth-largest of the eight planets in theSolar System. It is also the largest of the Solar System's four terrestrial planets. It is sometimes referred to as the World, the Blue Planet,[20] or by its Latin name, Terra.[note 6]
Earth formed 4.54 billion years ago, and life appeared on its surface within one billion years.[21] The planet is home to millions of species, including humans.[22] Earth's biosphere has significantly altered the atmosphereand other abiotic conditions on the planet, enabling the proliferation of aerobic organisms as well as the formation of the ozone layer which, together with Earth's magnetic field, blocks harmful solar radiation, permitting life on land.[23] The physical properties of the Earth, as well as its geological history and orbit, have allowed life to persist during this period. The planet is expected to continue supporting life for at least another 500 millionyears.[24][25]
Earth's outer surface is divided into several rigid segments, or tectonic plates, that migrate across the surface over periods of many millions of years. About 71% of the surface is covered by salt water oceans, with the remainder consisting of continents and islands which together have many lakes and other sources of water that contribute to the hydrosphere. Earth's poles are mostly covered with solid ice (Antarctic ice sheet) or sea ice(Arctic ice cap). The planet's interior remains active, with a thick layer of relatively solid mantle, a liquid outer core that generates a magnetic field, and a solid iron inner core.
Earth interacts with other objects in space, especially the Sun and the Moon. At present, Earth orbits the Sun once every 366.26 times it rotates about its own axis, which is equal to 365.26 solar days, or one sidereal year.[note 7] The Earth's axis of rotation is tilted 23.4° away from the perpendicular of its orbital plane, producing seasonal variations on the planet's surface with a period of one tropical year (365.24 solar days).[26] Earth's only known natural satellite, the Moon, which began orbiting it about 4.53 billion years ago, provides ocean tides, stabilizes the axial tilt, and gradually slows the planet's rotation. Between approximately 3.8 billion and4.1 billion years ago, numerous asteroid impacts during the Late Heavy Bombardment caused significant changes to the greater surface environment.
Both the mineral resources of the planet, as well as the products of the biosphere, contribute resources that are used to support a global human population. These inhabitants are grouped into about 200 independent sovereign states, which interact through diplomacy, travel, trade, and military action. Human cultures have developed many views of the planet, including personification as a deity, a belief in a flat Earth or in the Earth as the center of the universe, and a modern perspective of the world as an integrated environment that requires stewardship.
Mars
Mars is the fourth planet from the Sun in the Solar System. The planet is named after the Roman god of war, Mars. It is often described as the "Red Planet", as the iron oxide prevalent on its surface gives it a reddish appearance.[13]Mars is a terrestrial planet with a thin atmosphere, having surface features reminiscent both of the impact craters of the Moon and the volcanoes, valleys, deserts, and polar ice caps of Earth. The rotational period and seasonal cycles of Mars are likewise similar to those of Earth, as is the tilt that produces the seasons. Mars is the site of Olympus Mons, the highest known mountain within the Solar System, and of Valles Marineris, the largest canyon. The smooth Borealis basin in the northern hemisphere covers 40% of the planet and may be a giant impact feature.[14][15]
Until the first flyby of Mars occurred in 1965, by Mariner 4, many speculated about the presence of liquid water on the planet's surface. This was based on observed periodic variations in light and dark patches, particularly in the polar latitudes, which appeared to be seas and continents; long, dark striations were interpreted by some as irrigation channels for liquid water. These straight line features were later explained as optical illusions, though geological evidence gathered by unmanned missions suggest that Mars once had large-scale water coverage on its surface.[16] In 2005, radar data revealed the presence of large quantities of water ice at the poles,[17] and at mid-latitudes.[18][19] The Mars rover Spirit sampled chemical compounds containing water molecules in March 2007. ThePhoenix lander directly sampled water ice in shallow Martian soil on July 31, 2008.[20]
Mars has two moons, Phobos and Deimos, which are small and irregularly shaped. These may be capturedasteroids, similar to 5261 Eureka, a Martian trojan asteroid. Mars is currently host to three functional orbitingspacecraft: Mars Odyssey, Mars Express, and the Mars Reconnaissance Orbiter. On the surface are the Mars Exploration Rover Opportunity and its recently decommissioned twin, Spirit, along with several other inert landers and rovers, both successful and unsuccessful. The Phoenix lander completed its mission on the surface in 2008. Observations by NASA's now-defunct Mars Global Surveyor show evidence that parts of the southern polar ice cap have been receding.[21] Observations by NASA's Mars Reconnaissance Orbiter have revealed possible flowing water during the warmest months on Mars.[22]
Mars can easily be seen from Earth with the naked eye. Its apparent magnitude reaches −3.0[7] a brightness surpassed only by Venus, Jupiter, the Moon, and the Sun.
Jupiter
Jupiter is the fifth planet from the Sun and the largest planet within the Solar System.[13] It is a gas giant with a mass slightly less than one-thousandth of the Sun but is two and a half times the mass of all the other planets in our Solar System combined. Jupiter is classified as a gas giant along with Saturn, Uranus andNeptune. Together, these four planets are sometimes referred to as the Jovian or outer planets.
The planet was known by astronomers of ancient times and was associated with the mythology and religious beliefs of many cultures. The Romans named the planet after the Roman god Jupiter.[14] When viewed fromEarth, Jupiter can reach an apparent magnitude of −2.94, making it on average the third-brightest object in thenight sky after the Moon and Venus. (Mars can briefly match Jupiter's brightness at certain points in its orbit.)
Jupiter is primarily composed of hydrogen with a quarter of its mass being helium; it may also have a rocky core of heavier elements. Because of its rapid rotation, Jupiter's shape is that of an oblate spheroid (it possesses a slight but noticeable bulge around the equator). The outer atmosphere is visibly segregated into several bands at different latitudes, resulting in turbulence and storms along their interacting boundaries. A prominent result is the Great Red Spot, a giant storm that is known to have existed since at least the 17th century when it was first seen by telescope. Surrounding the planet is a faint planetary ring system and a powerful magnetosphere. There are also at least 64 moons, including the four large moons called the Galilean moons that were first discovered by Galileo Galilei in 1610. Ganymede, the largest of these moons, has a diameter greater than that of the planet Mercury.
Jupiter has been explored on several occasions by robotic spacecraft, most notably during the early Pioneerand Voyager flyby missions and later by the Galileo orbiter. The most recent probe to visit Jupiter was thePluto-bound New Horizons spacecraft in late February 2007. The probe used the gravity from Jupiter to increase its speed. Future targets for exploration in the Jovian system include the possible ice-covered liquid ocean on the moon Europa.
Saturn
Saturn is the sixth planet from the Sun and the second largest planet in the Solar System, after Jupiter. Saturn is named after the Roman god Saturn, equated to the Greek Cronus (the Titan father of Zeus), theBabylonian Ninurta and the Hindu Shani. Saturn's astronomical symbol (♄) represents the Roman god's sickle.
Saturn, along with Jupiter, Uranus and Neptune, is a gas giant. Together, these four planets are sometimes referred to as the Jovian, meaning "Jupiter-like", planets. Saturn has an average radius about 9 times larger than the Earth's.[12][13] While only 1/8 the average density of Earth, due to its larger volume, Saturn's mass is just over 95 times greater than Earth's.[14][15][16]
Because of Saturn's large mass and resulting gravitation, the conditions produced on Saturn are extreme if compared to Earth. The interior of Saturn is probably composed of a core of iron, nickel, silicon and oxygen compounds, surrounded by a deep layer of metallic hydrogen, an intermediate layer of liquid hydrogen andliquid helium and finally, an outer gaseous layer.[17] Electrical current within the metallic-hydrogen layer is thought to give rise to Saturn's planetary magnetic field, which is slightly weaker than Earth's and approximately one-twentieth the strength of Jupiter's.[18] The outer atmosphere is generally bland in appearance, although long-lived features can appear. Wind speeds on Saturn can reach 1,800 km/h, significantly faster than those on Jupiter.
Saturn has a ring system that is divided into nine continuous and three discontinuous main rings (arcs), consisting mostly of ice particles with a smaller amount of rocky debris and dust. Sixty-two[19] known moonsorbit the planet; fifty-three are officially named. This does not include the hundreds of "moonlets" within the rings. Titan, Saturn's largest and the Solar System's second largest moon (after Jupiter's Ganymede), is larger than the planet Mercury and is the only moon in the Solar System to possess a significant atmosphere.[20]
Uranus
Uranus is the seventh planet from the Sun. It has the third-largest planetary radius and fourth-largest planetary mass in the Solar System. It is named after the ancient Greek deity of the sky Uranus (Ancient Greek:Οὐρανός), the father of Cronus (Saturn) and grandfather of Zeus (Jupiter). Though it is visible to the naked eye like the five classical planets, it was never recognized as a planet by ancient observers because of its dimness and slow orbit.[16] Sir William Herschel announced its discovery on March 13, 1781, expanding the known boundaries of the Solar System for the first time in modern history. Uranus was also the first planet discovered with a telescope.
Uranus is similar in composition to Neptune, and both are of different chemical composition than the larger gas giants Jupiter and Saturn. As such, astronomers sometimes place them in a separate category called "ice giants." Uranus's atmosphere, while similar to Jupiter and Saturn's in its primary composition of hydrogen andhelium, contains more "ices" such as water, ammonia and methane, along with traces of hydrocarbons.[12] It is the coldest planetary atmosphere in the Solar System, with a minimum temperature of 49 K (–224 °C). It has a complex, layered cloud structure, with water thought to make up the lowest clouds, and methane thought to make up the uppermost layer of clouds.[12] In contrast, the interior of Uranus is mainly composed of ices and rock.[11]
Like the other giant planets, Uranus has a ring system, a magnetosphere, and numerous moons. The Uranian system has a unique configuration among the planets because its axis of rotation is tilted sideways, nearly into the plane of its revolution about the Sun. As such, its north and south poles lie where most other planets have their equators.[17] Seen from Earth, Uranus's rings can sometimes appear to circle the planet like an archery target and its moons revolve around it like the hands of a clock; in 2007 and 2008 the rings appeared edge-on. In 1986, images from Voyager 2 showed Uranus as a virtually featureless planet in visible light without the cloud bands or storms associated with the other giants.[17] Terrestrial observers have seen signs of seasonal change and increased weather activity in recent years as Uranus approached its equinox. The wind speeds on Uranus can reach 250 meters per second (900 km/h, 560 mph).[18]
Neptune
Neptune is the eighth and farthest planet from the Sun in the Solar System. Named for the Roman god of the sea, it is the fourth-largest planet by diameter and the third largest by mass. Neptune is 17 times the mass ofEarth and is slightly more massive than its near-twin Uranus, which is 15 times the mass of Earth but not as dense.[12] On average, Neptune orbits the Sun at a distance of 30.1 AU, approximately 30 times the Earth–Sun distance. Its astronomical symbol is ♆, a stylized version of the god Neptune's trident.
Discovered on September 23, 1846,[1] Neptune was the first planet found by mathematical prediction rather than by empirical observation. Unexpected changes in the orbit of Uranus led Alexis Bouvard to deduce that its orbit was subject to gravitational perturbation by an unknown planet. Neptune was subsequently observed byJohann Galle within a degree of the position predicted by Urbain Le Verrier, and its largest moon, Triton, was discovered shortly thereafter, though none of the planet's remaining 12 moons were located telescopically until the 20th century. Neptune has been visited by only one spacecraft, Voyager 2, which flew by the planet on August 25, 1989.
Neptune is similar in composition to Uranus, and both have compositions which differ from those of the largergas giants Jupiter and Saturn. Neptune's atmosphere, while similar to Jupiter's and Saturn's in that it is composed primarily of hydrogen and helium, along with traces of hydrocarbons and possibly nitrogen, contains a higher proportion of "ices" such as water, ammonia and methane. Astronomers sometimes categorize Uranus and Neptune as "ice giants" in order to emphasize these distinctions.[13] The interior of Neptune, like that of Uranus, is primarily composed of ices and rock.[14] Traces of methane in the outermost regions in part account for the planet's blue appearance.[15]
In contrast to the relatively featureless atmosphere of Uranus, Neptune's atmosphere is notable for its active and visible weather patterns. For example, at the time of the 1989 Voyager 2 flyby, the planet's southern hemisphere possessed a Great Dark Spot comparable to the Great Red Spot on Jupiter. These weather patterns are driven by the strongest sustained winds of any planet in the Solar System, with recorded wind speeds as high as 2,100 km/h.[16] Because of its great distance from the Sun, Neptune's outer atmosphere is one of the coldest places in the Solar System, with temperatures at its cloud tops approaching −218 °C(55 K). Temperatures at the planet's centre are approximately 5,400 K (5,000 °C).[17][18] Neptune has a faint and fragmented ring system, which may have been detected during the 1960s but was only indisputably confirmed in 1989 by Voyager 2.[19]
Pluto
In astronomy, Pluto, officially renamed (134 340) Pluto is a dwarf planet in the solar system, located below the orbit of Neptune. In the General Assembly of the International Astronomical Union (IAU) in Prague on August 24, 2006 created a new category called plutoid, which includes Pluto. It is also the prototype of a class of trans-Neptunian objects called Plutinos. It has a highly eccentric orbit inclined to the ecliptic, which runs until closer at perihelion inside the orbit of Neptune. Pluto has four satellites: Charon, Nix, Hydra and the recently discovered P4.2 These are celestial bodies that share the same category. So far there has been visited by any spacecraft, although it is expected that the mission of NASA's New Horizons flies over in 2015.It was discovered on February 18, 1930 by American astronomer Clyde William Tombaugh (1906-1997) from the Lowell Observatory in Flagstaff, Arizona, and considered the ninth and smallest planet in the solar system by the International Astronomical Union and public opinion from then until 2006, although his membership of the planets in the Solar System was always a subject of controversy among astronomers. After intense debate, the IAU decided on August 24, 2006, unanimously, to reclassify Pluto as a dwarf planet, requiring that a planet must "clear the environment of its orbit." He proposed his classification as a planet in the draft resolution, but disappeared from the final resolution adopted by the IAU General Assembly.From September 7, 2006 has the number 134340, awarded by the Minor Planet Center.Their great distance from the Sun and the Earth, coupled with its small size, prevents shine magnitude below the 13.8 in its best moments (orbital perihelion and opposition), so it can be appreciated only with telescopes from the 200 mm aperture, photographically or CCD camera. Even at their best point star appears as star-looking, yellow, featureless (apparent diameter of less than 0.1 seconds of arc).Until 2006 was considered the ninth planet in the Solar System. But later was classified as a dwarf planet Pluto
No hay comentarios:
Publicar un comentario